
Solution: Problem Set 1

Calculus 1

October 16, 2011

Problem 1

Before we sketch the function, let’s exploit some of the obvious properties of f . First notice that since f(x)
is the square of the number 1/x, therefore f(x) is always non-negative. This means that the graph of f is
never below the y-axis. We also see that when x is very large 1/x2 is very small and when x is close to zero,
1/x2 is a very large number. In fact f(x) becomes unbounded as x gets close to 0. Also, f(−x) = f(x), i.e.
f is an even function of x which means that its graph is symmetric about the y-axis.

In view of all these properties, now its trivial to sketch f and its plot is seen in the Figure 1.
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Figure 1: f(x) = 1/x2.

(a) We claim that limx→∞ f(x) = 0. This is justified by observing that if x is chosen large enough then
f(x) can be made as close to zero as we desire.
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(b) limx→0 1/x2 = ∞. Remember that ∞ is not a real number. This limit must be understood in the
sense that if x is made close enough to zero, 1/x2 can me made larger than any positive number. Also
notice that even if we extend the real numbers by including the symbol ∞ to represent a process in
which a number can be made larger than any given number, limx→0 1/x still does not exist because
1/x attains arbitrarily large positive as well as negative numbers in every neighbourhood of x = 0.

(c) f(0) is undefined.

Problem 2

For x < 4 the function is defined by a first degree polynomial and hence represents a straight line, which has
a negative slope in this case. For x > 4 the function is simply a ‘shifted’ version of

√
x. We can clearly see

that limx→4 f(x) = 0 and the argument to support this claim is simple: we can make the function values as
close to 0 as we want by selecting a small enough neighbourhood around the point x = 4.

Although limx→4 f(x) exists, the value of the function at x = 4, i.e. f(4) is NOT defined.
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Figure 2: A sketch of the function defined in Problem 2.

Problem 3

We are interested in finding the limit

lim
t→0

√
t2 + 9− 3

t2

and we can see that substituting t = 0 gives us an indeterminate 0/0 form. We therefore try to see if the
expression above can be written an alternative form. If we multiply the numerator and the denominator by
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√
t2 + 9 + 3, we get √

t2 + 9− 3

t2
=

t2

t2(
√
t2 + 9 + 3)

Now we cancel t2 from the expression, keeping in mind that this means t2 and hence t can not be 0. We are
then left with the problem of finding the limit

lim
t→0

1

(
√
t2 + 9 + 3)

Now, we can see that as t is getting closer and closer to 0 (but not equal to 0), the expression above is getting
closer and closer to the number 1/6 and we can make the above expression as close to 1/6 as we desire by
making t close enough to 0, therefore, we say

lim
t→0

√
t2 + 9− 3

t2
= lim

t→0

1

(
√
t2 + 9 + 3)

= 1/6.

Problem 4

To sketch f(x) = 1/(x2 + 1) notice that the function is even, always positive and gets closer and closer to
zero as x becomes large in magnitude on either side of the real line. The derivative of f is given as

f ′(x) =
d

dx
[f(x)] =

−2x

(x2 + 1)2

We can see that at x = 0 the derivative vanishes i.e. the derivative becomes 0 at x = 0. Recall that the
derivative of a function at a point gives us the slope of the tangent at that point. Therefore, the function
has a horizontal tangent at x = 0. Keeping in view all of these observations, we can now see that f should
look like as shown in Figure 3.
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Figure 3: f(x) = 1/(x2 + 1).
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To find the equation of the tangent line at x = 2, we calculate the derivative of f at x = 2. We get

f ′(2) = − 4

25

Now we can easily find the equation for the tangent since we now know its slope. Appealing to the point-slope
form of a line, we know that a line passing through the point (x0, y0) with a slope m is given by

y − y0 = m(x− x0).

In our case, x0 = 2, y0 = f(2) = 1/5 and m = −4/25. Using these values we get the equation for the tangent
line as

y = − 4

25
(x− 2) +

1

5
.

We can see this tangent line in Figure 4.
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1/(x2+1) and the line tangent to it at x=2

Figure 4: f(x) = 1/(x2 + 1) and the line tangent to it at x = 2.

Now we try to sketch the derivative of f . We already know that f ′(x) = −2x
(x2+1)2 . Again, notice that this

is an odd function of x since f(−x) = −f(x). This tells us that the sketch should be symmetric about the
origin. Also, f ′(x) is negative when x > 0 and positive when x < 0. The derivative is 0 when x = 0. From
the expression of f ′ we can also see that the derivative becomes closer and closer to zero as x becomes very
large in magnitude on either side of the real line. With the help of all these observations, we now sketch f
and its derivative together in Figure 5.
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Figure 5: f(x) = 1/(x2 + 1) and its derivative f ′(x) = −2x
(x2+1)2 .

Problem 5

The sketch of the function is shown in Figure 6. We can easily see that limx→a f(x) exists for every a except
when a = ±1.
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Figure 6: Piecewise function defined in Problem 5.

Problem 6

First of all note that we have to disprove the statement. The statement is: if f(x) < g(x) for all x, then
limx→a f(x) < limx→a g(x). Recall, that this statement is of the form A implies B, i.e.

A =⇒ B.

To disprove it, we need to show an example where A is true but B is false, which means for our case that
we need to find functions f and g such that f(x) < g(x) for all x but limx→a f(x) ≥ limx→a g(x).

There can be many examples to achieve this task, but let us define the function f as

f(x) = 0, for all x.

and g as

g(x) =

{
|x|, if x 6= 0,

1, if x = 0.

A plot of the function is shown in Figure 7. We can see that f is simply the horizontal line along the x-axis,
while g is |x| except at x = 0, where we have deliberately defined it to take the value 1. This ensures that
f(x) < g(x) for all x.
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Figure 7: f(x) < g(x) for all x but limx→0 f(x) = limx→0 g(x).

However, we can also see that limx→0 f(x) = 0 = limx→0 g(x). This disproves the original statement since
both limits are equal.

Problem 7

Again, there is no unique solution to this problem and one can come up with a lot of different examples.
Consider the function f defined as

f(x) =
1

x + 1
.

Then f(x2) = 1/(x2 + 1). We can see from the definition of f that limx→−1 f(x) does not exist but
limx→−1 f(x2) exists and equals 1/2.
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