Solution: Problem Set 1 Calculus 1

October 16, 2011

Problem 1

Before we sketch the function, let's exploit some of the obvious properties of f. First notice that since $f(x)$ is the square of the number $1 / x$, therefore $f(x)$ is always non-negative. This means that the graph of f is never below the y-axis. We also see that when x is very large $1 / x^{2}$ is very small and when x is close to zero, $1 / x^{2}$ is a very large number. In fact $f(x)$ becomes unbounded as x gets close to 0 . Also, $f(-x)=f(x)$, i.e. f is an even function of x which means that its graph is symmetric about the y-axis.
In view of all these properties, now its trivial to sketch f and its plot is seen in the Figure 1.

Figure 1: $f(x)=1 / x^{2}$.
(a) We claim that $\lim _{x \rightarrow \infty} f(x)=0$. This is justified by observing that if x is chosen large enough then $f(x)$ can be made as close to zero as we desire.
(b) $\lim _{x \rightarrow 0} 1 / x^{2}=\infty$. Remember that ∞ is not a real number. This limit must be understood in the sense that if x is made close enough to zero, $1 / x^{2}$ can me made larger than any positive number. Also notice that even if we extend the real numbers by including the symbol ∞ to represent a process in which a number can be made larger than any given number, $\lim _{x \rightarrow 0} 1 / x$ still does not exist because $1 / x$ attains arbitrarily large positive as well as negative numbers in every neighbourhood of $x=0$.
(c) $f(0)$ is undefined.

Problem 2

For $x<4$ the function is defined by a first degree polynomial and hence represents a straight line, which has a negative slope in this case. For $x>4$ the function is simply a 'shifted' version of \sqrt{x}. We can clearly see that $\lim _{x \rightarrow 4} f(x)=0$ and the argument to support this claim is simple: we can make the function values as close to 0 as we want by selecting a small enough neighbourhood around the point $x=4$.

Although $\lim _{x \rightarrow 4} f(x)$ exists, the value of the function at $x=4$, i.e. $f(4)$ is NOT defined.

Figure 2: A sketch of the function defined in Problem 2.

Problem 3

We are interested in finding the limit

$$
\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}
$$

and we can see that substituting $t=0$ gives us an indeterminate $0 / 0$ form. We therefore try to see if the expression above can be written an alternative form. If we multiply the numerator and the denominator by
$\sqrt{t^{2}+9}+3$, we get

$$
\frac{\sqrt{t^{2}+9}-3}{t^{2}}=\frac{t^{2}}{t^{2}\left(\sqrt{t^{2}+9}+3\right)}
$$

Now we cancel t^{2} from the expression, keeping in mind that this means t^{2} and hence t can not be 0 . We are then left with the problem of finding the limit

$$
\lim _{t \rightarrow 0} \frac{1}{\left(\sqrt{t^{2}+9}+3\right)}
$$

Now, we can see that as t is getting closer and closer to 0 (but not equal to 0), the expression above is getting closer and closer to the number $1 / 6$ and we can make the above expression as close to $1 / 6$ as we desire by making t close enough to 0 , therefore, we say

$$
\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}=\lim _{t \rightarrow 0} \frac{1}{\left(\sqrt{t^{2}+9}+3\right)}=1 / 6 .
$$

Problem 4

To sketch $f(x)=1 /\left(x^{2}+1\right)$ notice that the function is even, always positive and gets closer and closer to zero as x becomes large in magnitude on either side of the real line. The derivative of f is given as

$$
f^{\prime}(x)=\frac{d}{d x}[f(x)]=\frac{-2 x}{\left(x^{2}+1\right)^{2}}
$$

We can see that at $x=0$ the derivative vanishes i.e. the derivative becomes 0 at $x=0$. Recall that the derivative of a function at a point gives us the slope of the tangent at that point. Therefore, the function has a horizontal tangent at $x=0$. Keeping in view all of these observations, we can now see that f should look like as shown in Figure 3.

Figure 3: $f(x)=1 /\left(x^{2}+1\right)$.

To find the equation of the tangent line at $x=2$, we calculate the derivative of f at $x=2$. We get

$$
f^{\prime}(2)=-\frac{4}{25}
$$

Now we can easily find the equation for the tangent since we now know its slope. Appealing to the point-slope form of a line, we know that a line passing through the point $\left(x_{0}, y_{0}\right)$ with a slope m is given by

$$
y-y_{0}=m\left(x-x_{0}\right)
$$

In our case, $x_{0}=2, y_{0}=f(2)=1 / 5$ and $m=-4 / 25$. Using these values we get the equation for the tangent line as

$$
y=-\frac{4}{25}(x-2)+\frac{1}{5} .
$$

We can see this tangent line in Figure 4.

Figure 4: $f(x)=1 /\left(x^{2}+1\right)$ and the line tangent to it at $x=2$.

Now we try to sketch the derivative of f. We already know that $f^{\prime}(x)=\frac{-2 x}{\left(x^{2}+1\right)^{2}}$. Again, notice that this is an odd function of x since $f(-x)=-f(x)$. This tells us that the sketch should be symmetric about the origin. Also, $f^{\prime}(x)$ is negative when $x>0$ and positive when $x<0$. The derivative is 0 when $x=0$. From the expression of f^{\prime} we can also see that the derivative becomes closer and closer to zero as x becomes very large in magnitude on either side of the real line. With the help of all these observations, we now sketch f and its derivative together in Figure 5.

Figure 5: $f(x)=1 /\left(x^{2}+1\right)$ and its derivative $f^{\prime}(x)=\frac{-2 x}{\left(x^{2}+1\right)^{2}}$.

Problem 5

The sketch of the function is shown in Figure 6. We can easily see that $\lim _{x \rightarrow a} f(x)$ exists for every a except when $a= \pm 1$.

Figure 6: Piecewise function defined in Problem 5.

Problem 6

First of all note that we have to disprove the statement. The statement is: if $f(x)<g(x)$ for all x, then $\lim _{x \rightarrow a} f(x)<\lim _{x \rightarrow a} g(x)$. Recall, that this statement is of the form A implies B, i.e.

$$
A \Longrightarrow B
$$

To disprove it, we need to show an example where A is true but B is false, which means for our case that we need to find functions f and g such that $f(x)<g(x)$ for all x but $\lim _{x \rightarrow a} f(x) \geq \lim _{x \rightarrow a} g(x)$.
There can be many examples to achieve this task, but let us define the function f as

$$
f(x)=0, \text { for all } x
$$

and g as

$$
g(x)= \begin{cases}|x|, & \text { if } x \neq 0 \\ 1, & \text { if } x=0\end{cases}
$$

A plot of the function is shown in Figure 7. We can see that f is simply the horizontal line along the x -axis, while g is $|x|$ except at $x=0$, where we have deliberately defined it to take the value 1 . This ensures that $f(x)<g(x)$ for all x.

Figure 7: $f(x)<g(x)$ for all x but $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} g(x)$.

However, we can also see that $\lim _{x \rightarrow 0} f(x)=0=\lim _{x \rightarrow 0} g(x)$. This disproves the original statement since both limits are equal.

Problem 7

Again, there is no unique solution to this problem and one can come up with a lot of different examples. Consider the function f defined as

$$
f(x)=\frac{1}{x+1}
$$

Then $f\left(x^{2}\right)=1 /\left(x^{2}+1\right)$. We can see from the definition of f that $\lim _{x \rightarrow-1} f(x)$ does not exist but $\lim _{x \rightarrow-1} f\left(x^{2}\right)$ exists and equals $1 / 2$.

