Solution: Problem Set 2 Calculus 1

October 26, 2011

Problem 1

The sketch of the function is trivial and shown in Figure 1. $\lim _{x \rightarrow 0} f(x)$ does not exist and hence the function is not continuous at $x=0$.

Figure 1: f of Problem 1.

Problem 2

For $x \neq 1$, we have

$$
f(x)=\frac{x(x-1)}{(x+1)(x-1)}=\frac{x}{x+1}=\frac{(x+1)-1}{x+1}=1-\frac{1}{x+1} .
$$

The graph of $1-\frac{1}{x+1}$ is similar to the graph of $\frac{1}{x}$ with three important differences. (1). Instead of becoming unbounded at $x=0$, the function f becomes unbounded at $x=-1$. (2). The function tends to 1 as x becomes large in magnitude. (3). The two branches of the graph of f are inverted due to the minus sign in $1-\frac{1}{x+1}$. The graph can be seen in Figure 2.

Figure 2: f of Problem 2.

At $x=1$ the function is defined to take the value 1 , however, we can clearly see that

$$
\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1}\left(1-\frac{1}{x+1}\right)=\frac{1}{2}
$$

Since $\lim _{x \rightarrow 1} f(x) \neq f(1), f$ is not continuous at $x=1$.

Problem 3

Consider the function f defined as

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ -1 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

Then we see that f is discontinuous for every x because at each x the limit of the function does not exist. However, $|f|$ is clearly continuous for every x since $|f(x)|$ is identically equal to 1 .

Problem 4

Consider the function f defined as

$$
f(x)= \begin{cases}1 & \text { if } x=1 / n, n \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

This function is discontinuous at each x such that $x=1 / n$, where n is an integer because $\lim _{x \rightarrow 1 / n} f(x)=$ $0 \neq 1=f(1 / n)$. However for all other x, the function is continuous.

Problem 5

If $f(x)=\ln \left(x+\sqrt{\left(x^{2}+1\right)}\right.$, then

$$
\begin{aligned}
f(-x) & =\ln \left(-x+\sqrt{\left((-x)^{2}+1\right)}\right) \\
& =\ln \left(\left(-x+\sqrt{\left(x^{2}+1\right)}\right)\left[\frac{x+\sqrt{\left(x^{2}+1\right)}}{x+\sqrt{\left(x^{2}+1\right)}}\right]\right) \\
& =\ln \left(\frac{1}{x+\sqrt{\left(x^{2}+1\right)}}\right) \\
& =-\ln \left(x+\sqrt{\left(x^{2}+1\right)}\right) \quad \quad(\text { since } \ln (1 / x)=-\ln (x)) \\
& =-f(x) .
\end{aligned}
$$

Using the chain rule repeatedly, we get

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{x+\sqrt{\left(x^{2}+1\right)}}\left(1+\frac{2 x}{2 \sqrt{\left(x^{2}+1\right)}}\right) \\
& =\frac{1}{x+\sqrt{\left(x^{2}+1\right)}}\left(\frac{\sqrt{\left(x^{2}+1\right)}+x}{\sqrt{\left(x^{2}+1\right)}}\right) \\
f^{\prime}(x) & =\frac{1}{\sqrt{\left(x^{2}+1\right)}}>0 .
\end{aligned}
$$

Since $f^{\prime}(x)>0$ for all x, f is an increasing function on the whole real line.
Sketching the function is now fairly straight forward. Since f is an odd function, it must pass through the origin. We can confirm this by noticing that $f(0)=0 . f$ is an increasing function but its tangents become almost horizontal as x increases in magnitude. This gives us a sketch similar to Figure 3.

Figure 3: $f(x)=\ln \left(x+\sqrt{\left(x^{2}+1\right)}\right.$

To calculate the inverse function of f, let $y=f(x)=\ln \left(x+\sqrt{\left(x^{2}+1\right)}\right.$. Then

$$
\begin{aligned}
e^{y} & =x+\sqrt{x^{2}+1} \\
\left(e^{y}-x\right)^{2} & =x^{2}+1 \\
e^{2 y}-2 x e^{y}-1 & =0 \\
x & =\frac{e^{y}-e^{-y}}{2} .
\end{aligned}
$$

The inverse function (as a function of the variable x) can be written as

$$
f^{-1}(x)=\frac{e^{x}-e^{-x}}{2}=\sinh (x)
$$

The sketch of f^{-1} is simply obtained by reflecting f about the line $y=x$, or we can see that for large positive x, f^{-1} is similar to $e^{x} / 2$ and for negative numbers with large magnitude, f^{-1} is similar to $e^{-x} / 2$. The graph of f^{-1} can be seen in Figure 4

Figure 4: $f(x)=\sinh (x)$

Problem 6

Let us take time on the x -axis and position on the y -axis. We designate M as the position of the monastery and T as the position of the mountain top. Then the journey of the monk from monastery to the mountain top can be represented as a function of time. We call this function u (u for going "up"). Similarly, once at the top, the monk's way back from T to M can be represented as a function say d (d for going "down"). Both these functions u and d can be seen in Figure 5 .

Figure 5: The monk going up and down.

Now consider the function $u-d$. At 7AM, $u(7 A M)-d(7 A M)<0$; while at $7 \mathrm{PM}, u(7 P M)-d(7 P M)>0$. Furthermore, $u-d$ is continuous since u and d both are continuous. Then, by the intermediate value property, there exists a time t between 7AM and 7PM, such that $u(t)-d(t)=0$ or in other words the monk crosses a point of his journey at the same time instance.

Problem 7

Let $\overline{P Q}=h=\overline{S T}$ and let $\overline{Q T}=D$. Suppose further that $\overline{Q R}=x$, then $\overline{R T}=D-x$. The total length L of the rope is given by

$$
L(x)=\sqrt{h^{2}+x^{2}}+\sqrt{h^{2}+(D-x)^{2}} .
$$

Then to find a minimum of L, we first differentiate L to get

$$
\frac{d L}{d x}=\frac{x}{\sqrt{h^{2}+x^{2}}}+\frac{-(D-x)}{\sqrt{h^{2}+(D-x)^{2}}}
$$

We now put $\frac{d L}{d x}=0$. This implies

$$
\begin{aligned}
\frac{x}{\sqrt{h^{2}+x^{2}}}+\frac{-(D-x)}{\sqrt{h^{2}+(D-x)^{2}}} & =0 \\
\frac{(D-x)}{\sqrt{h^{2}+(D-x)^{2}}} & =\frac{x}{\sqrt{h^{2}+x^{2}}} \\
(D-x)^{2}\left(h^{2}+x^{2}\right) & =x^{2}\left(h^{2}+(D-x)^{2}\right) \\
x^{2}(D-x)^{2}+h^{2}(D-x)^{2} & =x^{2} h^{2}+x^{2}(D-x)^{2} \\
(D-x)^{2} & =x^{2} \quad \text { since } h \neq 0 \\
(D-x)^{2}-x^{2} & =0 \\
(D-x+x)(D-x-x) & =0 \\
D(D-2 x) & =0 \\
x & =D / 2 \quad \text { since } D \neq 0 .
\end{aligned}
$$

We should now check that $L^{\prime \prime}(D / 2)<0$ to make sure that L is minimized at $x=D / 2$. This is left as an exercise. The solution $x=D / 2$ has a simple geometric meaning, namely, triangle $P Q R$ is congruent to triangle $S T R$ and hence angles a and b are also equal.

Problem 8

(i) $D f(2 x+1)=f^{\prime}(2 x+1)=\cos (2 x+1)$.
(ii) $D(f \circ h)(x)=D f(h(x)) D h(x)=\cos (h(x))(2)=2 \cos (2 x+1)$.

Problem 9

By the mean value theorem, we have

$$
\begin{equation*}
\frac{f(1001)-f(1)}{1001-1}=f^{\prime}(c) \tag{1}
\end{equation*}
$$

where c is a number in the interval $(1,1001)$. Since $f(1)=0,(1)$ can be rewritten as

$$
\begin{equation*}
f(1001)=1000 f^{\prime}(c) \tag{2}
\end{equation*}
$$

Now we don't know what the value of c is but we know that $f^{\prime}(c)$ is greater than or equal to the minimum value of $f^{\prime}(x)$, where x is in $(1,1001)$. We therefore have

$$
\begin{equation*}
f^{\prime}(c) \geq \min f^{\prime}(x), \quad x \in(1,1001) \tag{3}
\end{equation*}
$$

We now search for the minimum value of $f^{\prime}(x)$. Since $f^{\prime}(x)=\frac{1}{\sin \left(\frac{\pi}{5+x^{2}}\right)}, f^{\prime}(x)$ will be minimum when $\sin \left(\frac{\pi}{5+x^{2}}\right)$ is maximized. We notice that $\sin ()$ is an increasing function on $[0, \pi / 2]$, so the maximum value of \sin will be attained when its argument is maximum. As x varies in the interval $(1,1000) \frac{\pi}{5+x^{2}}$ varies from $\pi / 6$ to $\pi / 1000005$ and clearly the maximum value is $\pi / 6$. So the maximum of $\sin \left(\frac{\pi}{5+x^{2}}\right)$ is attained when $x=1$ and

$$
\begin{equation*}
\left.\sin \left(\frac{\pi}{5+x^{2}}\right)\right|_{x=1}=\sin \left(\frac{\pi}{6}\right)=\frac{1}{2} \tag{4}
\end{equation*}
$$

Hence the minimum value of $f^{\prime}(x)=2$. This allows us to rewrite (3) as

$$
\begin{equation*}
f^{\prime}(c) \geq 2 \tag{5}
\end{equation*}
$$

Multiplying both sides of the above inequality by 1000 and then comparing with (2), we get the required result as

$$
\begin{equation*}
f(1001) \geq 2000 \tag{6}
\end{equation*}
$$

