Solution: Problem Set 4 Calculus 1

November 17, 2011

Problem 1

Recall the statement of the fundamental theorem which guarantees the differentiability of $g(x)=\int_{a}^{x} f$ at x if f is continuous at x. If f is not continuous, the fundamental theorem does not tell us anything and we need to check the differentiability of g explicitly. Resorting to the definition of the derivative of g at $x=0$, we have

$$
\begin{aligned}
g^{\prime}(0) & =\lim _{\Delta x \rightarrow 0} \frac{g(\Delta x)-g(0)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x} \int_{0}^{\Delta x} f(t) d t
\end{aligned}
$$

Now, if $\Delta x>0$, then $f(t)=2$ and

$$
\begin{aligned}
\lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x} \int_{0}^{\Delta x} f(t) d t & =\lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x} \int_{0}^{\Delta x} 2 d t \\
& =\lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x}(2 \Delta x) \\
& =\lim _{\Delta x \rightarrow 0} 2 \\
& =2
\end{aligned}
$$

If on the other hand $\Delta x<0$ then $f(t)=t$ and

$$
\begin{aligned}
\lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x} \int_{0}^{\Delta x} f(t) d t & =\lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x} \int_{0}^{\Delta x} t d t \\
& =\lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x} \frac{(\Delta x)^{2}}{2} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{2} \\
& =0
\end{aligned}
$$

We therefore conclude that the derivative of g at 0 , which is a limit, does not exist. On the other hand, f is continuous at all x other than $x=0$ and hence we can apply the fundamental theorem and say that

$$
g^{\prime}(x)=f(x) \quad \text { if } \quad x \neq 0
$$

However, remember that once we say that g is differentiable we mean that g is differentiable at every single point of the domain. Since this is not true, g is not a differentiable function on \mathbb{R}.

Problem 2

(a)

Since an anti-derivative of t^{2} is $t^{3} / 3$, by the corollary to the Fundamental theorem we have

$$
\int_{a}^{b} t^{2} d t=\left.\frac{t^{3}}{3}\right|_{a} ^{b}
$$

and therefore,

$$
f(x)=\int_{1}^{\cos (x)} t^{2} d t=\left.\frac{t^{3}}{3}\right|_{1} ^{\cos (x)}=\frac{\cos ^{3}(x)}{3}-\frac{\cos (1)}{3}
$$

(b)

From Part (a),

$$
f(x)=\frac{\cos ^{3}(x)}{3}-\frac{\cos (1)}{3}
$$

Applying the chain rule we get

$$
\frac{d f}{d x}=\frac{d}{d x}\left(\frac{\cos ^{3}(x)}{3}-\frac{\cos (1)}{3}\right)=-\cos ^{2}(x) \sin (x)
$$

(c)

Since $g(x)=\int_{1}^{x} t^{2} d t$, by letting $h(x)=\cos (x)$, we get

$$
(g \circ h)(x)=g(h(x))=g(\cos (x))=\int_{1}^{\cos (x)} t^{2} d t=f(x)
$$

Differentiating both sides of the above equation, we get

$$
D(g \circ h)(x)=D f(x)
$$

Now applying the chain rule to the left-hand side of the equation above, we get

$$
\begin{equation*}
D f(x)=D g(h(x)) D h(x) \tag{1}
\end{equation*}
$$

We also know that

$$
g(x)=\int_{1}^{x} t^{2} d t
$$

Now applying the fundamental theorem we get

$$
\begin{equation*}
\frac{d g}{d x}=D g(x)=x^{2} \tag{2}
\end{equation*}
$$

Since $h(x)=\cos (x)$, using (2) we get

$$
\begin{equation*}
D g(h(x))=[\cos (x)]^{2}=\cos ^{2}(x) \tag{3}
\end{equation*}
$$

Also

$$
\begin{equation*}
D h(x)=-\sin (x) \tag{4}
\end{equation*}
$$

Now substituting (3) and (4) in (1) we get the same result as in Part (b), namely

$$
D f(x)=\frac{d f}{d x}=-\cos ^{2}(x) \sin (x)
$$

Problem 3

(a)

We wish to compute the function $D f$ where the function f is defined as

$$
f(x)=\int_{0}^{\alpha(x)} g(t) d t
$$

Thinking the same way as in the previous problem, let

$$
h(x)=\int_{0}^{x} g(t) d t
$$

and by the fundamental theorem

$$
D h(x)=g(x)
$$

Then

$$
f(x)=(h \circ \alpha)(x)=h(\alpha(x))=\int_{0}^{\alpha(x)} g(t) d t
$$

Now differentiating the above equation and applying the chain rule, we get

$$
D f(x)=D(h \circ \alpha)(x)=D h(\alpha(x)) D \alpha(x),
$$

and hence

$$
D f(x)=g(\alpha(x)) \alpha^{\prime}(x) .
$$

The above equation tells us what the function does if the input variable is x. It is easy to see now that,

$$
D f(y)=g(\alpha(y)) \alpha^{\prime}(y)
$$

(b)

For a given x, let a be a real number, such that $\beta(x) \leq a \leq \alpha(x)$, then

$$
\begin{aligned}
f(x) & =\int_{\beta(x)}^{\alpha(x)} g(t) d t \\
& =\int_{\beta(x)}^{a} g(t) d t+\int_{a}^{\alpha(x)} g(t) d t \\
& =\int_{a}^{\alpha(x)} g(t) d t-\int_{a}^{\beta(x)} g(t) d t
\end{aligned}
$$

Now we differentiate the last equation at x and use the result obtained in the previous part to get

$$
\left.D f(x)=g(\alpha(x)) \alpha^{\prime}(x)\right)-g(\beta(x)) \beta^{\prime}(x)
$$

And therefore, the function $D f$ as a function of the variable z is given as

$$
\left.D f(z)=g(\alpha(z)) \alpha^{\prime}(z)\right)-g(\beta(z)) \beta^{\prime}(z)
$$

Problem 4

Notice that

$$
\tan (x)=\frac{\sin (x)}{\cos (x)}
$$

and $\frac{d}{d x}(\cos (x))=-\sin (x)$, so if we let $u=\cos (x)$, then $d u=-\sin (x) d x$. When $x=a, u=\cos (a)$ and when $x=b, u=\cos (b)$. Using these values we get

$$
\begin{aligned}
\int_{a}^{b} \tan (x) d x & =\int_{a}^{b} \frac{\sin (x)}{\cos (x)} d x \\
& =-\int_{\cos (a)}^{\cos (b)} \frac{d u}{u} \\
& =\ln (\cos (a))-\ln (\cos (b)) \\
& =\ln \left[\frac{\cos (a)}{\cos (b)}\right]
\end{aligned}
$$

This is probably the way you would have solved this question using your previous background. Let's do this question by the new method. Let

$$
f(x)=\frac{1}{x}
$$

and let

$$
g(x)=\cos (x)
$$

Then

$$
g^{\prime}(x)=-\sin (x) .
$$

We can clearly see that

$$
(f \circ g)(x) g^{\prime}(x)=\frac{1}{\cos (x)}(-\sin (x))=-\tan (x)
$$

From the theorem in the lecture notes

$$
\int_{a}^{b}(f \circ g)(x) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(x) d x
$$

Therefore

$$
\begin{aligned}
\int_{a}^{b}-\tan (x) d x & =\int_{\cos (a)}^{\cos (b)} \frac{1}{x} d x \\
\int_{a}^{b} \tan (x) d x & =-[\ln (\cos (b))-\ln (\cos (a))] \\
& =\ln \left[\frac{\cos (a)}{\cos (b)}\right]
\end{aligned}
$$

Problem 5

(1)

Since the diagonal of the square runs from $-\sqrt{x}$ to \sqrt{x}, the length of the diagonal is $2 \sqrt{x}$. We now want to determine the length of the side of the square. Let us call this length a. Then by the Pythagoras' theorem

$$
a^{2}+a^{2}=(2 \sqrt{x})^{2}
$$

Solving for a we get $a=\sqrt{2 x}$. Therefore the area of the square at x is given by

$$
A(x)=a^{2}=2 x
$$

The volume is then given as

$$
\begin{aligned}
V & =\int_{0}^{4} A(x) d x \\
& =\int_{0}^{4} 2 x d x \\
& =\left[x^{2}\right]_{0}^{4} \\
& =16
\end{aligned}
$$

(2)

The length of the diameter of the cross-sectional disk is

$$
\left(2-x^{2}\right)-x^{2}=2-2 x^{2}
$$

Therefore the length of the radius of the cross sectional disk at x is given by

$$
r(x)=1-x^{2}
$$

and the area of the cross-sectional disk at x is therefore

$$
A(x)=\pi r(x)^{2}=\pi\left(1-x^{2}\right)^{2}
$$

The volume can now be calculated as

$$
\begin{aligned}
V & =\int_{-1}^{1} A(x) d x \\
& =\pi \int_{-1}^{1}\left(1-x^{2}\right)^{2} d x \\
& =\pi \int_{-1}^{1}\left(1-2 x^{2}+x^{4}\right) d x \\
& =\frac{16}{15} \pi
\end{aligned}
$$

(5)
(a)

The area of an equilateral triangle with side of length a is given by

$$
\Delta=\frac{\sqrt{3} a^{2}}{4}
$$

The derivation of the above formula is left as an exercise. For this question

$$
a=2 \sqrt{\sin x}
$$

and hence the area of the cross-sectional triangle at x is given by

$$
A(x)=\frac{\sqrt{3} a^{2}}{4}=\frac{4 \sqrt{3} \sin x}{4}=\sqrt{3} \sin x
$$

The volume is therefore given as

$$
\begin{aligned}
V & =\int_{0}^{\pi} A(x) d x \\
& =\sqrt{3} \int_{0}^{\pi} \sin x d x \\
& =2 \sqrt{3}
\end{aligned}
$$

(b)

The area of the cross-sectional square is given by

$$
A(x)=(2 \sqrt{\sin x})(2 \sqrt{\sin x})=4 \sin x
$$

The volume is therefore given as

$$
\begin{aligned}
V & =\int_{0}^{\pi} A(x) d x \\
& =4 \int_{0}^{\pi} \sin x d x \\
& =8
\end{aligned}
$$

(10)

The length of one leg of the triangle at y is given as $2 \sqrt{1-y^{2}}$. The area of the cross-sectional triangle, which is an isosceles triangle, is given as

$$
A(y)=\frac{\left(2 \sqrt{1-y^{2}}\right)\left(2 \sqrt{1-y^{2}}\right)}{2}=2\left(1-y^{2}\right)
$$

The volume is hence given as

$$
\begin{aligned}
V & =\int_{-1}^{1} A(y) d y \\
& =2 \int_{-1}^{1}\left(1-y^{2}\right) d y \\
& =\frac{8}{3}
\end{aligned}
$$

(12)

If we rotate the pyramid anti-clockwise, we can see that the cross sections of this tilted pyramid are squares of sides varying linearly from 0 to 3 as x varies from 0 to 5 . Therefore the side of the cross-sectional square, as a function of x, is given as

$$
l(x)=\frac{3}{5} x
$$

The area would be

$$
A(x)=l^{2}(x)=\frac{9}{25} x^{2}
$$

The volume is then given as

$$
\begin{aligned}
V & =\int_{0}^{5} A(x) d x \\
& =\frac{9}{25} \int_{0}^{5} x^{2} d x \\
& =15
\end{aligned}
$$

