
Solution: Problem Set 4

Calculus 1

November 17, 2011

Problem 1

Recall the statement of the fundamental theorem which guarantees the differentiability of g(x) =
∫ x
a
f at x

if f is continuous at x. If f is not continuous, the fundamental theorem does not tell us anything and we
need to check the differentiability of g explicitly. Resorting to the definition of the derivative of g at x = 0,
we have

g′(0) = lim
∆x→0

g(∆x)− g(0)

∆x

= lim
∆x→0

1

∆x

∫ ∆x

0

f(t)dt

Now, if ∆x > 0, then f(t) = 2 and

lim
∆x→0

1

∆x

∫ ∆x

0

f(t)dt = lim
∆x→0

1

∆x

∫ ∆x

0

2dt

= lim
∆x→0

1

∆x
(2∆x)

= lim
∆x→0

2

= 2.

If on the other hand ∆x < 0 then f(t) = t and

lim
∆x→0

1

∆x

∫ ∆x

0

f(t)dt = lim
∆x→0

1

∆x

∫ ∆x

0

tdt

= lim
∆x→0

1

∆x

(∆x)2

2

= lim
∆x→0

∆x

2

= 0.

We therefore conclude that the derivative of g at 0, which is a limit, does not exist. On the other hand, f is
continuous at all x other than x = 0 and hence we can apply the fundamental theorem and say that

g′(x) = f(x) if x 6= 0.

However, remember that once we say that g is differentiable we mean that g is differentiable at every single
point of the domain. Since this is not true, g is not a differentiable function on R.
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Problem 2

(a)

Since an anti-derivative of t2 is t3/3, by the corollary to the Fundamental theorem we have∫ b

a

t2dt =
t3

3

∣∣∣b
a

and therefore,

f(x) =

∫ cos(x)

1

t2dt =
t3

3

∣∣∣cos(x)

1
=

cos3(x)

3
− cos(1)

3
.

(b)

From Part (a),

f(x) =
cos3(x)

3
− cos(1)

3
.

Applying the chain rule we get

df

dx
=

d

dx

(
cos3(x)

3
− cos(1)

3

)
= − cos2(x) sin(x).

(c)

Since g(x) =
∫ x

1
t2dt, by letting h(x) = cos(x), we get

(g ◦ h)(x) = g(h(x)) = g(cos(x)) =

∫ cos(x)

1

t2dt = f(x).

Differentiating both sides of the above equation, we get

D(g ◦ h)(x) = Df(x).

Now applying the chain rule to the left-hand side of the equation above, we get

Df(x) = Dg(h(x))Dh(x). (1)

We also know that

g(x) =

∫ x

1

t2dt.

Now applying the fundamental theorem we get

dg

dx
= Dg(x) = x2. (2)

Since h(x) = cos(x), using (2) we get

Dg(h(x)) = [cos(x)]2 = cos2(x). (3)

Also
Dh(x) = − sin(x). (4)

Now substituting (3) and (4) in (1) we get the same result as in Part (b), namely

Df(x) =
df

dx
= − cos2(x) sin(x).
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Problem 3

(a)

We wish to compute the function Df where the function f is defined as

f(x) =

∫ α(x)

0

g(t)dt.

Thinking the same way as in the previous problem, let

h(x) =

∫ x

0

g(t)dt,

and by the fundamental theorem
Dh(x) = g(x).

Then

f(x) = (h ◦ α)(x) = h(α(x)) =

∫ α(x)

0

g(t)dt.

Now differentiating the above equation and applying the chain rule, we get

Df(x) = D(h ◦ α)(x) = Dh(α(x))Dα(x),

and hence
Df(x) = g(α(x))α′(x).

The above equation tells us what the function does if the input variable is x. It is easy to see now that,

Df(y) = g(α(y))α′(y).

(b)

For a given x, let a be a real number, such that β(x) ≤ a ≤ α(x), then

f(x) =

∫ α(x)

β(x)

g(t)dt

=

∫ a

β(x)

g(t)dt+

∫ α(x)

a

g(t)dt

=

∫ α(x)

a

g(t)dt−
∫ β(x)

a

g(t)dt

Now we differentiate the last equation at x and use the result obtained in the previous part to get

Df(x) = g(α(x))α′(x))− g(β(x))β′(x).

And therefore, the function Df as a function of the variable z is given as

Df(z) = g(α(z))α′(z))− g(β(z))β′(z).
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Problem 4

Notice that

tan(x) =
sin(x)

cos(x)

and d
dx (cos(x)) = − sin(x), so if we let u = cos(x), then du = − sin(x)dx. When x = a, u = cos(a) and when

x = b, u = cos(b). Using these values we get∫ b

a

tan(x)dx =

∫ b

a

sin(x)

cos(x)
dx

= −
∫ cos(b)

cos(a)

du

u

= ln(cos(a))− ln(cos(b))

= ln

[
cos(a)

cos(b)

]
This is probably the way you would have solved this question using your previous background. Let’s do this
question by the new method. Let

f(x) =
1

x
and let

g(x) = cos(x).

Then
g′(x) = − sin(x).

We can clearly see that

(f ◦ g)(x)g′(x) =
1

cos(x)
(− sin(x)) = − tan(x).

From the theorem in the lecture notes∫ b

a

(f ◦ g)(x)g′(x)dx =

∫ g(b)

g(a)

f(x)dx.

Therefore ∫ b

a

− tan(x)dx =

∫ cos(b)

cos(a)

1

x
dx∫ b

a

tan(x)dx = − [ln(cos(b))− ln(cos(a))]

= ln

[
cos(a)

cos(b)

]

Problem 5

(1)

Since the diagonal of the square runs from −
√
x to

√
x, the length of the diagonal is 2

√
x. We now want to

determine the length of the side of the square. Let us call this length a. Then by the Pythagoras’ theorem

a2 + a2 = (2
√
x)2.
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Solving for a we get a =
√

2x. Therefore the area of the square at x is given by

A(x) = a2 = 2x.

The volume is then given as

V =

∫ 4

0

A(x)dx

=

∫ 4

0

2xdx

=
[
x2
]4
0

= 16.

(2)

The length of the diameter of the cross-sectional disk is

(2− x2)− x2 = 2− 2x2.

Therefore the length of the radius of the cross sectional disk at x is given by

r(x) = 1− x2

and the area of the cross-sectional disk at x is therefore

A(x) = πr(x)2 = π(1− x2)2.

The volume can now be calculated as

V =

∫ 1

−1

A(x)dx

= π

∫ 1

−1

(1− x2)2dx

= π

∫ 1

−1

(1− 2x2 + x4)dx

=
16

15
π

(5)

(a)

The area of an equilateral triangle with side of length a is given by

∆ =

√
3a2

4
.

The derivation of the above formula is left as an exercise. For this question

a = 2
√

sinx
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and hence the area of the cross-sectional triangle at x is given by

A(x) =

√
3a2

4
=

4
√

3 sinx

4
=
√

3 sinx.

The volume is therefore given as

V =

∫ π

0

A(x)dx

=
√

3

∫ π

0

sinxdx

= 2
√

3

(b)

The area of the cross-sectional square is given by

A(x) = (2
√

sinx)(2
√

sinx) = 4 sinx.

The volume is therefore given as

V =

∫ π

0

A(x)dx

= 4

∫ π

0

sinxdx

= 8

(10)

The length of one leg of the triangle at y is given as 2
√

1− y2. The area of the cross-sectional triangle,
which is an isosceles triangle, is given as

A(y) =
(2
√

1− y2)(2
√

1− y2)

2
= 2(1− y2)

The volume is hence given as

V =

∫ 1

−1

A(y)dy

= 2

∫ 1

−1

(1− y2)dy

=
8

3

(12)

If we rotate the pyramid anti-clockwise, we can see that the cross sections of this tilted pyramid are squares
of sides varying linearly from 0 to 3 as x varies from 0 to 5. Therefore the side of the cross-sectional square,
as a function of x, is given as

l(x) =
3

5
x.
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The area would be

A(x) = l2(x) =
9

25
x2.

The volume is then given as

V =

∫ 5

0

A(x)dx

=
9

25

∫ 5

0

x2dx

= 15
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