University of Engineering and Technology Lahore

Department of Electrical Engineering
November 4, 2011
Due: Tuesday, November 15.

Reading

- Calculus lecture notes (from last week).
- Thomas and Finney, section 6.1 (uploaded on http://www.computerscience.pk).

1. Consider the function

$$
f(x)= \begin{cases}x & \text { if } x \leq 0 \\ 2 & \text { if } x>0\end{cases}
$$

Consider the function $g(x)=\int_{-1}^{x} f$. Is the function g differentiable? If so what is the derivative? Does this violate the fundamental theorem of calculus?
2. Consider the function

$$
f(x)=\int_{1}^{\cos x} t^{2} d t
$$

(a) Compute the integral to show that $f(x)=\frac{\cos ^{3} x}{3}-\frac{\cos 1}{3}$.
(b) Compute $\frac{d f}{d x}$.
(c) Now define $g(x)=\int_{1}^{x} t^{2} d t$. Find a function $h(x)$ such that you can write $f(x)=$ $g \circ h(x)$. Now use the chain rule and the fundamental theorem of calculus to find $D f(x)$.
3. We can generalize the result of the previous problem. In this question g is some function defined on \mathbb{R}.
(a) Define $f(x)=\int_{0}^{\alpha(x)} g(t) d t$. Compute $D f(y)$.
(b) Define $f(x)=\int_{\beta(x)}^{\alpha(x)} g$. Compute $D f(z)$.
4. Compute $\int_{b}^{a} \tan (x) d x$ using the substitution theorem. You are supposed to use both versions of the substitution theorem: first do it by the method you studied in F.Sc./Alevels and then later on use the substitution theorem as taught in class.
5. Exercise 6.1 (Thomas's Calculus). 1, 2, 5, 10, 12.

