Solution: Problem Set 5 Calculus 1

November 25, 2011

15

The cross-sections are circular disks with radii given by

$$
y=1-\frac{x}{2}
$$

Hence the volume is given by

$$
\begin{aligned}
V & =\int_{0}^{2} \pi\left(1-\frac{x}{2}\right)^{2} d x \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

25

In this case the cross-section is again a circular disk with radius

$$
\sqrt{2}-\sec x \tan x
$$

To determine the limits of integration we need to find out the value of x for which $\sec x \tan x$ becomes equal to $\sqrt{2}$. Doing some algebra we can see that

$$
\begin{aligned}
\sec x \tan x & =\sqrt{2} \\
\frac{\sin x}{\cos ^{2} x} & =\sqrt{2} \\
\sin x & =\sqrt{2}\left(1-\sin ^{2} x\right) \\
\sqrt{2} \sin ^{2} x+\sin x-\sqrt{2} & =0 .
\end{aligned}
$$

Solving the above quadratic equation for $\sin x$ we get

$$
\sin x=\frac{1}{\sqrt{2}} \text { OR } \sin x=-\sqrt{2}
$$

Discarding the second root (which is not real), we get

$$
x=\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}
$$

Hence the volume is given by

$$
\begin{aligned}
V & =\int_{0}^{\pi / 4} \pi(\sqrt{2}-\sec x \tan x)^{2} d x \\
& =\pi\left(\frac{\pi}{2}+2 \sqrt{2}-\frac{11}{3}\right)
\end{aligned}
$$

33

The cross-section is a washer with outer radius 1 and inner radius $\sqrt{\cos x}$. Hence the cross-sectional area is given by

$$
A(x)=\pi\left(1^{2}-(\sqrt{\cos x})^{2}\right)=\pi(1-\cos x)
$$

The volume can now be calculated as

$$
\begin{aligned}
V & =\int_{-\pi / 2}^{\pi / 2} \pi(1-\cos x) d x \\
& =\pi^{2}-2 \pi
\end{aligned}
$$

38

In this question as well, the cross-section is a washer with outer radius $4-x^{2}$ and inner radius $2-x$. Hence the cross-sectional area is given by

$$
A(x)=\pi\left(\left(4-x^{2}\right)^{2}-(2-x)^{2}\right)
$$

To determine the limits of integration we equate the two radii, i.e.

$$
4-x^{2}=2-x
$$

The above equation has the solution $x=-1$ and $x=2$. Therefore the volume can now be calculated as

$$
\begin{aligned}
V & =\int_{-1}^{2} \pi\left(\left(4-x^{2}\right)^{2}-(2-x)^{2}\right) d x \\
& =\frac{108 \pi}{5}
\end{aligned}
$$

